Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0284022, 2023.
Article in English | MEDLINE | ID: mdl-37294811

ABSTRACT

Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.


Subject(s)
Microbiota , Rhodobacteraceae , Animals , Humans , Pacific Ocean , RNA, Ribosomal, 16S/genetics , Taiwan , Seawater/microbiology , Rhodobacteraceae/genetics
2.
BMC Bioinformatics ; 22(Suppl 10): 633, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36474163

ABSTRACT

BACKGROUND: The correct establishment of the barcode classification system for fish can facilitate biotaxonomists to distinguish fish species, and it can help the government to verify the authenticity of the ingredients of fish products or identify unknown fish related samples. The Cytochrome c oxidation I (COI) gene sequence in the mitochondria of each species possesses unique characteristics, which has been widely used as barcodes in identifying species in recent years. Instead of using COI gene sequences for primer design, flanking tRNA segments of COI genes from 2618 complete fish mitochondrial genomes were analyzed to discover suitable primers for fish classification at taxonomic family level. The minimal number of primer sets is designed to effectively distinguish various clustered groups of fish species for identification applications. Sequence alignment analysis and cross tRNA segment comparisons were applied to check and ensure the primers for each cluster group are exclusive. RESULTS: Two approaches were applied to improve primer design and re-cluster fish species. The results have shown that exclusive primers for 2618 fish species were successfully discovered through in silico analysis. In addition, we applied sequence alignment analysis to confirm that each pair of primers can successfully identify all collected fish species at the taxonomic family levels. CONCLUSIONS: This study provided a practical strategy to discover unique primers for each fishery species and a comprehensive list of exclusive primers for extracting COI barcode sequences of all known fishery species. Various applications of verification of fish products or identification of unknown fish species could be effectively achieved.


Subject(s)
RNA, Transfer , RNA, Transfer/genetics
3.
Mar Environ Res ; 182: 105782, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36308800

ABSTRACT

Human emissions of carbon dioxide are causing irreversible changes in our oceans and impacting marine phytoplankton, including a group of small green algae known as picochlorophytes. Picochlorophytes grown in natural phytoplankton communities under future predicted levels of carbon dioxide have been demonstrated to thrive, along with redistribution of the cellular metabolome that enhances growth rate and photosynthesis. Here, using next-generation sequencing technology, we measured levels of transcripts in a picochlorophyte Chlorella, isolated from the sub-Antarctic and acclimated under high and current ambient CO2 levels, to better understand the molecular mechanisms involved with its ability to acclimate to elevated CO2. Compared to other phytoplankton taxa that induce broad transcriptomic responses involving multiple parts of their cellular metabolism, the changes observed in Chlorella focused on activating gene regulation involved in different sets of pathways such as light harvesting complex binding proteins, amino acid synthesis and RNA modification, while carbon metabolism was largely unaffected. Triggering a specific set of genes could be a unique strategy of small green phytoplankton under high CO2 in polar oceans.


Subject(s)
Chlorella , Seawater , Humans , Seawater/chemistry , Carbon Dioxide/analysis , Transcriptome , Chlorella/genetics , Chlorella/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Oceans and Seas , Phytoplankton/genetics
4.
Genes (Basel) ; 13(6)2022 06 19.
Article in English | MEDLINE | ID: mdl-35741857

ABSTRACT

The common carp is a hypoxia-tolerant fish, and the understanding of its ability to live in low-oxygen environments has been applied to human health issues such as cancer and neuron degeneration. Here, we investigated differential gene expression changes during hypoxia in five common carp organs including the brain, the gill, the head kidney, the liver, and the intestine. Based on RNA sequencing, gene expression changes under hypoxic conditions were detected in over 1800 genes in common carp. The analysis of these genes further revealed that all five organs had high expression-specific properties. According to the results of the GO and KEGG, the pathways involved in the adaptation to hypoxia provided information on responses specific to each organ in low oxygen, such as glucose metabolism and energy usage, cholesterol synthesis, cell cycle, circadian rhythm, and dopamine activation. DisGeNET analysis showed that some human diseases such as cancer, diabetes, epilepsy, metabolism diseases, and social ability disorders were related to hypoxia-regulated genes. Our results suggested that common carp undergo various gene regulations in different organs under hypoxic conditions, and integrative bioinformatics may provide some potential targets for advancing disease research.


Subject(s)
Carps , Hypoxia , Animals , Gene Expression Profiling , Humans , Hypoxia/genetics , Hypoxia/metabolism , Oxygen , Transcriptome/genetics
5.
Genes (Basel) ; 12(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34680934

ABSTRACT

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide in 2020. Colonoscopy and the fecal immunochemical test (FIT) are commonly used as CRC screening tests, but both types of tests possess different limitations. Recently, liquid biopsy-based DNA methylation test has become a powerful tool for cancer screening, and the detection of abnormal DNA methylation in stool specimens is considered as an effective approach for CRC screening. The aim of this study was to develop a novel approach in biomarker selection based on integrating primary biomarkers from genome-wide methylation profiles and secondary biomarkers from CRC comorbidity analytics. A total of 125 differential methylated probes (DMPs) were identified as primary biomarkers from 352 genome-wide methylation profiles. Among them, 51 biomarkers, including 48 hypermethylated DMPs and 3 hypomethylated DMPs, were considered as suitable DMP candidates for CRC screening tests. After comparing with commercial kits, three genes (ADHFE1, SDC2, and PPP2R5C) were selected as candidate epigenetic biomarkers for CRC screening tests. Methylation levels of these three biomarkers were significantly higher for patients with CRC than normal subjects. The sensitivity and specificity of integrating methylated ADHFE1, SDC2, and PPP2R5C for CRC detection achieved 84.6% and 92.3%, respectively. Through an integrated approach using genome-wide DNA methylation profiles and electronic medical records, we could design a biomarker panel that allows for early and accurate noninvasive detection of CRC using stool samples.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Molecular Diagnostic Techniques/methods , Alcohol Oxidoreductases/genetics , Biomarkers, Tumor/standards , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Comorbidity , Humans , Mitochondrial Proteins/genetics , Molecular Diagnostic Techniques/standards , Occult Blood , Protein Phosphatase 2/genetics , Sensitivity and Specificity , Syndecan-2/genetics
6.
BMC Bioinformatics ; 19(Suppl 9): 284, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30367568

ABSTRACT

BACKGROUND: Transcriptomic sequencing (RNA-seq) related applications allow for rapid explorations due to their high-throughput and relatively fast experimental capabilities, providing unprecedented progress in gene functional annotation, gene regulation analysis, and environmental factor verification. However, with increasing amounts of sequenced reads and reference model species, the selection of appropriate reference species for gene annotation has become a new challenge. METHODS: We proposed a novel approach for finding the most effective reference model species through taxonomic associations and ultra-conserved orthologous (UCO) gene comparisons among species. An online system for multiple species selection (MSS) for RNA-seq differential expression analysis was developed, and comprehensive genomic annotations from 291 reference model eukaryotic species were retrieved from the RefSeq, KEGG, and UniProt databases. RESULTS: Using the proposed MSS pipeline, gene ontology and biological pathway enrichment analysis can be efficiently achieved, especially in the case of transcriptomic analysis of non-model organisms. The results showed that the proposed method solved problems related to limitations in annotation information and provided a roughly twenty-fold reduction in computational time, resulting in more accurate results than those of traditional approaches of using a single model reference species or the large non-redundant reference database. CONCLUSIONS: Selection of appropriate reference model species helps to reduce missing annotation information, allowing for more comprehensive results than those obtained with a single model reference species. In addition, adequate model species selection reduces the computational time significantly while retaining the same order of accuracy. The proposed system indeed provides superior performance by selecting appropriate multiple species for transcriptomic analysis compared to traditional approaches.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Genome , Models, Biological , Molecular Sequence Annotation , Transcriptome , Animals , Bacteria/genetics , Gene Ontology , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Plants/genetics , Reference Standards , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...